William D. Atchison, PhD

  • Faculty, Training Faculty, Cellular & Molecular

Professor, Pharmacology & Toxicology

Ph.D., 1980, University of Wisconsin

Pub Med Search for Dr. Atchison

 B331 Life Science

Pharmacology & Toxicology Directory

Research Interests

The nervous system has long been recognized as one of the most susceptible organ systems to insult from toxic environmental contaminants due to its limited capacity to repair tissue damage. Unlike other tissues such as liver, kidney or skin, for which cellular repair occurs readily, toxicity to the nervous system is generally irreversible. During the last few years, interest has focused on the study of neurotoxicology. This is due to the heightened awareness of society to the potential for neurotoxicity following disastrous or potentially disastrous episodes of contamination seen with agents such as methylmercury in Japan and Iraq, polychlorinated and polybrominated biphenyls in Taiwan and here in the U.S.A., and insecticides such as mirex and kepone. Historically, most neurotoxicology studies have focused on pathological descriptions of the lesions observed clinically in affected individuals. Few mechanistic studies at the cellular level have been undertaken, so the toxic mechanisms of action of these agents remain largely unknown.

My research interest is the study of effects of chemicals on the nervous system, particularly those chemicals which act directly on the synapse. My primary research interest is in the cellular mechanism of action of chemicals which disrupt Ca2+-dependent processes at the membrane and intracelluarly. A variety of techniques including electrophysiological recordings of ion channel activity (patch-voltage clamp) and synaptic transmission (intracellular and extracellular microelectrode recording techniques), neurochemical analysis of synaptic function and fluorescent microscopy and digital imaging of intracellular ion concentrations using fluorescent probes such as Fura-2. Toxicological research interests are presently focused on the effects of heavy metals such as methylmercury, many of which exert potent toxic actions at chemical synapses, and on the mechanism of delayed neurotoxicity caused by certain sulfur-containing agents. A second area of interest in my laboratory is the pharmacology and physiology of neurotransmitter release in the peripheral and central nervous system, especially identifying the molecular entities involved in Ca2+-dependent neurosecretion.